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Abstract: The optimization problems, such as scheduling or project management, in which the objective function 

depends on the operations maximum and plus, can be naturally formulated and solved in max-plus algebra. A 

system of discrete events, e.g., activations of processors in parallel computing, or activations of some other 

cooperating machines, is described by a systems of max-plus linear equations. In particular, if the system is in a 

steady state, such as a synchronized computer network in data processing, then the state vector is an eigenvector of 

the system. In reality, the entries of matrices and vectors are considered as intervals.   The properties and recognition 

algorithms   for several types of interval eigenvectors are studied in this paper.   For a given interval matrix   and 

interval vector, a set of generators is defined. Then, the strong and the strongly universal eigenvectors are studied 

and described as max-plus linear combinations of generators.  Moreover,  a polynomial recognition algorithm is 

suggested and its correctness is proved. Similar results are presented for the weak eigenvectors. The results are 

illustrated by numerical examples. The results have a general character and can be applied in every max-plus 

algebra and every instance of the interval eigenproblem. 
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1. Introduction 

In many practical problems, the standard algebraic operations “plus” and “product” are inadequate, e.g., in 

scheduling problems, synchronization problems,  or in project management,  and binary operations “maximum” and 

“plus” seem to be more appropriate.  This observation  leads to the definition and use of so-called max-plus algebra, 

which has been used by many authors, see e.g., [1–4]. 

Max-plus algebras represent a suitable mathematical tool for exploration of systems working in discrete steps 
called discrete event systems (DES, for short). A DES is determined by the transition matrix, A, and the starting state 

vector, x(0). The sequence of state vectors in time is then computed by recurrent formula x(k+1) = A ⊗ x(k) using the 
matrix operations derived from “maximum” and “plus” 
(for more details, see [2,5,6]). 

For convenience of the reader, we present here the basic definitions. A max-plus algebra is a triple (B, ⊕, ⊗), where 

B is the set of real numbers with added −∞ = ε, and ⊕ = max, ⊗ = + are binary operations on B.  Clearly, ε is the 

neutral element with respect to ⊕  and the absorbing element with 

respect to ⊗. B(m, n) (B(n)) denote the set of all matrices (vectors) of the given dimension over B. The linear ordering 

on B induces a partial ordering on B(m, n) and B(n), with respect to all entries of the matrix (vector). 

The work of a DES in time often comes to a steady state.   In the formal matrix notation,         the steady states 

correspond to max-plus eigenvectors  fulfilling  the  equation  A ⊗ x  =  λ ⊗ x, with A ∈ B(n, n), x ∈ B(n). 
It is assumed that an eigenvector is different from the ‘zero’ vector with all entries equal to ε.  In this notation, 

the intervals between the beginnings of consecutive cycles on every component of DES are equal to a scheduled 

value λ ∈ B. 

In the real world, the entries of matrices and vectors are usually not strict values and should 

be considered as intervals. The properties and recognition algorithms for several types of interval eigenvectors are 

studied in this paper. The strong, strongly universal and weak interval eigenvectors in max-plus algebra are 

investigated, and polynomial algorithms for the recognition versions of these problems are presented. 
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The  results  can  be  applied  in  every  max-plus  algebra  and  every  instance  of   the   interval eigenproblem. 

2. Definitions and Basic Properties 

Our results will be illustrated by the following simple example describing the main ideas of  the investigation, 

see Figure 1. 

 

Figure 1. Work of DES in time. 
 

Example  An interactive system consisting of n entities (computers, or some other cooperating machines) working in stages can 

be represented by discrete-event systems. Denote C1, ..., C4 the computers in parallel computation sharing partial data to 

continue the computation in the next stage.  Suppose  xi(k) stands for   the activation time of the k-th stage on Ci (i = 1, ..., 4). 

Furthermore, suppose that the entries of a matrix A (called the transition matrix) aij denote the computation time of computer Cj 

while preparing the data for the work of computer Ci in the (k + 1)-st stage (i, j = 1, ..., 4). The interference of the system can be 

described by recurrence relations 

xi(k + 1) = max
.

x1(k) + ai1,  x2(k) + ai2,  x3(k) + ai3,  x4(k) + ai4)
Σ

,  i ∈ {1, 2, 3, 4}. 

The considered system can be written in matrix/vector form as x(k + 1) = A ⊗ x(k). Moreover, if we schedule for λ the intervals 

between the beginnings of consecutive cycles on every computer, then we obtain x(k + 1) = λ ⊗ x(k). Finally, for steady 
scheduling of the system, we have to solve the equation 

A ⊗ x = λ ⊗ x. 
Remark 1. In Example 1, the entries xi are interpreted as activation times of cooperating machines Ci in a DES, while λ is the 

length of the interval between the beginnings of consecutive cycles in the steady run of the system. This interpretation implies that 

x cannot contain ε entries. Moreover, by a suitable start of the time-measuring, we can achieve xi ≥ 0. The above interpretation 

gives λ > 0 as well. 

Remark 2. On the other hand, the entries aij = ε can occur in the transition matrix. The interpretation of such situation is: “Ci 

need not wait for Cj”. Hence, the case F = {(i, j) ∈ N; aij  = ε} = N × N  is trivial and is not allowed. 

 
Remark 3. In LP computations, the constraints with a single ε value on the lower side of the inequality sign are automatically 

satisfied and may be left out of consideration. 

 

Let us define, similarly as in [7–10], the interval matrix with bounds A, A ∈ B(n, n) and interval vector with 

bounds x, x ∈ B(n), 

[A, A] = 
. 

A ∈ B(n, n); A ≤ A ≤ A 
Σ 

, [x, x] = { x ∈ B(n); x ≤ x ≤ x} 
 

and suppose that a fixed interval matrix  A  =  [A, A] and interval vector  X  =  [x, x] are given.  The interval 

eigenproblem for A and X consists of recognizing whether A ⊗ x = λ ⊗ x holds true for A ∈ A, x ∈ X, λ ∈ B, with 

suitable quantifiers (e.g., for all A  ∈ A, for some  A  ∈ A, for all x  ∈ X, for some x ∈ X) and their various 

combinations. According to the choice of quantifiers and their order, several different types of interval eigenvectors 

can be defined (see, e.g., [11–13] for similar classification). The following three types are studied in detail in this 

paper. 
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Definition  Suppose there is a given interval matrix A and an interval vector X. Then, X is called 

• a strong eigenvector of A 

if (∃λ ∈ B)(∀A ∈ A)(∀x ∈ X)[ A ⊗ x = λ ⊗ x]; 

• a strongly universal eigenvector of A 

if (∃x ∈ X)(∃λ ∈ B)(∀A ∈ A)[ A ⊗ x = λ ⊗ x]; 

• a weak eigenvector of A 

if (∃λ ∈ B)(∃x ∈ X)(∃A ∈ A)[ A ⊗ x = λ ⊗ x]. 

Analogously as the above mentioned interval eigenvectors, the corresponding eigenvalues (the strong eigenvalue, the 

strongly universal eigenvalue, and the weak eigenvalue) of the interval matrix A are also defined. 

 

 

 

Figure 2. Steady scheduled DES. 

 
Remark 4. The investigated ‘universal’ type can be interpreted as follows.  In general, the interval vector X  is a universal 

eigenvector of A if there is an eigenvalue λ ∈ B and a vector x ∈ X, which is a steady state of the discrete event system for every 

transition matrix A ∈ A (in other words, x is a universal eigenvector of A, with eigenvalue λ). 

It is welcome in scheduling, when there is one common universal eigenvector x ∈ X for all transition matrices A ∈ A (the 
interval vector X is then called strongly universal). In such situations, it is possible to choose the activation vector within the 

given interval [x, x], while every possible transition matrix in the given interval is acceptable. 

Otherwise, the universal eigenvector x depends on A. If the eigenvalue λ also depends on A, then the interval eigenvector 

X is called weakly universal. The universal and weakly universal interval eigenvectors are not studied in this paper. 

3. Strongly Universal Interval Eigenvectors in a Max-Plus Algebra 

In a strongly universal case, there is one (so-called: universal) eigenvector x ∈ X which corresponds to all 

transition matrices in the given interval A. Then, the scheduled run of the DES with the starting state x is satisfied in 

every stage, if the transition matrix is kept within the A limits. 

 

Proposition  Let x, x ∈ B(n), A, A ∈ B(n, n). The interval vector X = [x, x] is a strongly universal eigenvector of the interval 

matrix A = [A, A] if and only if there are λ ∈ B and x ∈ X such that 

A ⊗ x = λ ⊗ x,                 (1) 

A ⊗ x = λ ⊗ x.                 (2) 

Proof. Assume λ ∈ B, and x ∈ X fulfill (1) and (2). Take any A ∈ A, that is, A ≤ A ≤ A. Then, A ⊗ x  ≤  A ⊗ x  ≤  A 

⊗ x,  by the monotonicity of the operations in a max-plus algebra.  This implies   A ⊗ x = λ ⊗ x, in view of (1) and 
(2). The converse implication is trivial. 

LP approach. The existence of λ ∈ B, and x ∈ X in Proposition  satisfying (1) and (2) can be recognized by solving the 

following linear programming problem: Psu with variables λ, x1, x2, . . . , xn 

z = λ → min                (3) 
 

subject to 
 

aij − xi + xj ≤ λ for every i, j ∈ N, (4) 

xj ≤ xj for every j ∈ N, (5) 
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− ∈ 

− ∈ 

xj ≤ xj for every j ∈ N. (6) 

Theorem  The interval vector X = [x, x], x, x ∈ B(n), is a strongly universal eigenvector of the interval matrix A = [A, A], A, 

A ∈ B(n, n), if and only if the minimization problem (3)–(6) has an optimal solution satisfying 
 

max ( aij xi + xj) = λ for every i N,                (7) 
j∈N 

max ( aij xi + xj) = λ for every i N.                (8) 
j∈N 

Proof. It is easy to see that, for every pair (i, j) ∈ F, the equality aij = ε implies that is automatically satisfied. That is, 

this constraint has only to be considered for (i, j) ∈ N × N \ F (see Remark 3). Analogous limitations are to be 
applied in (7) and (8). 

Now, let us assume that λopt and xopt are optimal solutions of (3)–(6) with (7) and (8). In view of Proposition 

, X is strongly universal. Conversely, assume that X = [x, x] is a strongly universal eigenvector of A = [A, A]. 

Then, by Proposition, there are λ ∈ B and x ∈ X satisfying (1) and (2). By easy equivalent 
modifications, we see that λ and x satisfy (7) and (8). 

Thus, for every i ∈ N, λ is the least upper bound of the set of all (aij − xi + xj) with j ∈ N (and also the least 

upper bound of the set of all (ai j − xi + x j) with j ∈ N and (i, j) ∈/ F). That is, λ, x is an optimal solution of the 
minimization problem (3)–(6). 

 

Corollary 2. The problem of recognizing whether a given interval vector X is a strongly universal eigenvector of a given interval 

matrix A in a max-plus algebra is solvable with the help of an LP minimization problem with n + 1 variables and 2n2 + 2n 

constraints, and by verifying 2n max-plus linear equations in O(n3)-time. 

4. Conclusions 

Three types of interval eigenvectors: the strong, the strongly universal, and the weak interval eigenvector of an 

interval matrix in max-plus algebra have been studied. 

The structure of an eigenvector, and a polynomial algorithm for the corresponding recognition problem have 

been presented for each of the considered types. Surprisingly, another analogous type of a semi-strongly universal 

eigenvector turned out to be equivalent to the strongly universal type, in spite of the fact that the first notion is 

formally weaker than the second one. 

The working procedures of the algorithms are illustrated by numerical examples. The examples also show which 

of the considered types are not equivalent. 

The presented results correspond to the authors’ systematic effort to solve the recognition problem for various 

types of interval eigenvectors in max-plus and max-min algebra. Polynomial recognitions of the universal and weakly 

universal interval eigenvectors remain open for future research. 
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